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A B S T R A C T

Efferent and afferent fibers of the vagus nerve are involved in regulating hunger and satiety. Vagally-mediated
heart rate variability (vmHRV) reflects vagal activity. Previously no study addressed a potential association
between resting state vagal activity and intuitive eating. Self-reports on intuitive eating and measures of resting
state vmHRV were obtained in 39 students (16 female, mean age: 19.64 ± 1.44 years). Hierarchical multiple
regression models showed that, after controlling for gender, age, and body mass index, resting vagal activity was
inversely related to the Unconditional Permission to Eat subscale of the Intuitive Eating scale. Individuals with
higher resting vagal activity tend to be less willing to eat desired foods and are more likely to label certain foods
as forbidden. Future studies should include measures of self-regulation and eating disorder symptomatology to
identify potential mediators or moderators when attempting to replicate these preliminary findings in larger
samples.

1. Introduction

The gastrointestinal tract is innervated by the vagus nerve
(Berthoud, 2008), signifying its importance to eating behavior. Speci-
fically, both vagal efferent (motor) and afferent (sensory) fibers are
involved in regulating hunger and satiety. On the one hand, the acti-
vation of vagal efferents in the cephalic phase, when the anticipation of
food entering the stomach prepares the body for digestion, leads to the
release of ghrelin (Feldman and Richardson, 1986). On the other hand,
the activation of vagal afferents subsequent to food ingestion initiates
feedback processes that induce satiety and eventually encourage the
termination of a meal (Berthoud, 2008).

The vagus nerve modulates heart rate variability (HRV). The heart is
dually innervated by the parasympathetic and the sympathetic nervous
system with the parasympathetic branch decelerating, and the sympa-
thetic branch accelerating, heart rate. HRV is the resulting variation of
the inter-beat-intervals. Vagally-mediated HRV (vmHRV) reflects
parasympathetic modulation of the heart rate (Levy, 1997), and pro-
vides a non-invasive, widely-used, surrogate measure for vagal activity
(Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996). Empirical
data show that individuals with high vagal activity at rest tend to score

higher on positive affect and well-being, whereas those with low vagal
activity trend toward heightened anxiety and depressed mood
(Chalmers et al., 2014; Geisler et al., 2010; Kemp and Quintana, 2013;
Kemp et al., 2010).

Alterations in vagal activity at rest have been reported in in-
dividuals with eating disorders. Paradoxically, the majority of studies
on individuals with anorexia nervosa have found vmHRV to be in-
creased in comparison to healthy controls (for a review, see Mazurak
et al., 2011). Similarly, individuals with bulimia nervosa also seem to
be characterized by increased vmHRV (Peschel et al., 2016a; Peschel
et al., 2016b).

While vagal activity has been examined among those with eating
disorders, no study has examined associations between vagal activity
and adaptive eating behavior.

Intuitive eating (IE) entails focusing on internal sensations of
hunger and satiety rather than external (e.g., eating because food is
readily available) or emotional (e.g., negative affect) cues when de-
termining when, what, and how much to eat. Because those who eat
intuitively are aware of their physiological hunger and satiety signals
and regulate their eating behavior accordingly, they do not engage in
dieting practices, including calorie restriction, avoiding certain foods,
or eating only at particular times during the day (Tribole and Resch,
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1995).
In the present study, we examined a possible link between vagal

activity and intuitive eating. Given that IE is negatively associated with
eating disorder symptomatology (Tylka and Kroon Van Diest, 2013)
and eating disorders are characterized by higher vagal activity, we
hypothesized that IE would be inversely related to vagal activity in-
dexed by vmHRV.

2. Materials and methods

2.1. Participants and procedures

Forty-five participants were recruited from a large Midwestern
University's Psychology Research Experience Program, whereby stu-
dents complete research tasks for partial course credit. We asked all
participants not to smoke, undergo vigorous physical activity, or drink
caffeine 6-h prior to the experiment. Six participants were excluded due
to equipment failure, leaving a sample of 39 students for the final
analysis.

After participants signed informed consent, measurements of height
and weight were obtained to calculate body mass index (BMI; kg/m2).
Participants were subsequently seated in a quiet room without natural
light and completed the Intuitive Eating Scale-2 (IES-2; Tylka and
Kroon Van Diest, 2013). The experimenter left the room, but commu-
nication continued to be enabled through a dual microphone speaker. A
non-recording camera allowed for additional supervision to ensure
safety. After completing the IES-2, the experimenter entered the room
and prepared the physiological recordings. Table 1 includes age and
BMI data.

2.2. Measures

2.2.1. Resting state vagal activity
Once electrodes were in place, participants completed a 5-minute

baseline-resting period, while they sat in a comfortable chair placed in a
room without natural light, and viewed a blank, gray screen, and were
instructed not to move or fall asleep while spontaneously breathing.
Heart rate was continuously recorded with a 3‑lead electrocardiogram
attached to a 16-channel bioamplifier (NeXus 16). BioTrace+ software
was used to collect and store physiological data. Inter-beat-intervals
were exported to Kubios software (Tarvainen et al., 2014) for artifact
correction and HRV analyses. The first and last minute of recordings
were excluded to rule out potential effects of adaption. We calculated
the root mean square of successive differences (RMSSD) as an index of
resting vagal activity. As such, we report vmHRV results using RMSSD.
RMSSD values were natural log transformed (ln) to fit assumptions of

linear analyses (Ellis et al., 2008). Mean (3.83) and standard deviation
(0.46) values for lnRMSSD in the current study are comparable to
average values and standard deviations reported elsewhere (Nunan
et al., 2010).

2.2.2. Intuitive Eating Scale
The 23-item self-report IES-2 (Tylka and Kroon Van Diest, 2013)

contains four subscales: Unconditional Permission to Eat (UPE; six
items, e.g., “If I am craving a certain food, I allow myself to have it”),
Eating for Physical Rather Than Emotional Reasons (EPR; eight items,
e.g., “When I am lonely, I do NOT turn to food for comfort”), Reliance
on Hunger and Satiety Cues (RHSC; six items, e.g., “I trust my body to
tell me how much to eat”), and Body-Food Choice Congruence (B-FCC;
three items, e.g., “I mostly eat foods that give my body energy and
stamina”). Items are rated on a 5-point scale (1 = strongly disagree;
5 = strongly agree) and averaged to generate total IES-2-score and
subscale scores, with higher values indicating greater intuitive eating.

2.3. Data analysis

All statistical tests were conducted using SPSS v. 22. Hierarchical
multiple regression analyses examined the relationships between
lnRMSSD (resting vmHRV) as a continuous variable and IES-2 total and
subscale scores controlling for age, gender, and BMI. All tests were two-
tailed and analyzed using p < 0.05.

3. Results

Hierarchical multiple regression models showed that, after con-
trolling for gender, age, and BMI, resting vagal activity (lnRMSSD) was
inversely associated with UPE (see Table 2). No associations between
resting vagal activity and IES-2 total or other subscale scores were
significant. However, the positive association between resting vagal
activity and the B-FCC-subscale approached statistical significance (see
Table 2).

Table 1
Sample characteristics.

N (female) 39 (16)

Age, mean years (SD) 19.64 (1.44)
BMIa, mean kg/m2 (SD) 25.16 (5.08)
IES-2, mean (SD)

Total 3.52 (0.44)
UPE 3.39 (0.75)
EPR 3.62 (0.74)
RHSC 3.54 (0.66)
B-FCC 3.44 (0.95)

RMSSD, mean ms log (SD) 3.83 (0.46)

RVT = resting state vagal activity; RMSSD = root mean square of suc-
cessive differences as a proxy for resting state vagal activity (log trans-
formed); IES-2: Intuitive Eating Scale–2; EPR: Eating for Physical Rather
Than Emotional Reasons; UPE: Unconditional Permission to Eat; RHSC:
Reliance on Hunger and Satiety Cues; B-FCC: Body–Food Choice
Congruence.

a Recordings from four individuals on BMI were missing.

Table 2
Hierarchical regression analyses for resting state vagal activity predicting IES-2 scores
controlling for age, gender, and BMI⁎.

Criterion Step Predictor β t R2 ΔR2 ΔF

IES-2: Total 1 Gender −0.069 −0.397 0.005 0.005 0.157
2 Age −0.084 −0.466 0.011 0.007 0.218
3 BMI −0.033 −0.172 0.012 0.001 0.030
4 RMSSD −0.240 −1.067 0.049 0.036 1.140

IES-2: UPE 1 Gender −0.018 −0.105 0.000 0.000 0.011
2 Age 0.016 0.086 0.001 0.000 0.007
3 BMI −0.147 −0.760 0.019 0.018 0.578
4 RMSSD −0.451 −2.125 0.147 0.128 4.515*

IES-2: EPR 1 Gender −0.134 −0.779 0.018 0.018 0.607
2 Age −0.140 −0.789 0.037 0.019 0.622
3 BMI −0.123 −0.647 0.050 0.013 0.418
4 RMSSD −0.075 −0.334 0.053 0.004 0.111

IES-2: RHSC 1 Gender 0.087 0.503 0.008 0.008 0.253
2 Age −0.115 −0.647 0.020 0.013 0.419
3 BMI 0.179 0.941 0.048 0.027 0.886
4 RMSSD −0.235 −1.068 0.082 0.035 1.140

IES-2: B-FCC 1 Gender −0.060 −0.346 0.004 0.004 0.120
2 Age 0.123 0.687 0.018 0.014 0.472
3 BMI 0.127 0.663 0.032 0.014 0.439
4 RMSSD 0.347 1.597 0.108 0.076 2.550

Note. RMSSD = root mean square of successive differences (log transformed) as a proxy
for resting state vagal activity; IES-2: Intuitive Eating Scale-2; EPR: Eating for Physical
Rather Than Emotional Reasons; UPE: Unconditional Permission to Eat; RHSC: Reliance
on Hunger and Satiety Cues; B-FCC: Body–Food Choice Congruence; BMI = body mass
index.

⁎ Recordings from four individuals on BMI were missing. p < 0.05.
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4. Discussion

After controlling for gender, age, and BMI, a significant negative
association was found between resting vagal activity and one compo-
nent of intuitive eating: UPE. Thus, individuals with higher resting
vagal activity tend to be less willing to eat desired foods and more likely
to label certain foods as forbidden. Given the conceptual overlap be-
tween low UPE and high dietary restraint (Tylka and Wilcox, 2006),
those with higher vagal activity seem to be more restraining regarding
their eating behavior, meaning they aim to limit their intake of calories
and unhealthy food more strongly than individuals with lower resting
vagal activity. Yet, high rigid dietary restraint has been associated with
poorer physical and psychological outcomes, such as lower life sa-
tisfaction, interoceptive awareness, and body appreciation and higher
negative affect, binge eating, eating disorders, depression, food pre-
occupation, and adiposity/BMI (Goldfield et al., 2010; Stice et al., 2010;
Tylka et al., 2015).

The finding of the present study might appear surprising because
higher resting vagal activity has been found to be largely associated
with adaptive processes, such as self- and emotion-regulation
(Segerstrom and Nes, 2007; Thayer et al., 2009; Williams et al., 2015).
However, the negative association between UPE and resting vagal ac-
tivity is not necessarily paradoxical, considering that restriction of food
intake, reflected by lower UPE, is also a highly self-regulatory (although
unhealthy) process. Accordingly, higher resting vagal activity in in-
dividuals with lower UPE may reflect increased efforts to restrict intake
of certain foods and the amount of calories. Including measures of self-
and emotion-regulation in future research would allow for the ex-
amination of potential mediating or moderating effects of the link be-
tween lower UPE and higher resting vagal activity.

Unquestionably, inferences to the potential presence of eating
pathologies exclusively based on the IES-2 scores cannot be drawn,
since eating disorder symptoms or diagnoses were not evaluated in the
present study. Notably, however, of the IES-2 subscales, UPE has the
largest inverse association with eating disorder symptomatology (Tylka
and Wilcox, 2006). This is of particular interest, since vagal activity is
increased in individuals with eating disorders (Mazurak et al., 2011;
Peschel et al., 2016b).

Nevertheless, even with the small sample size, the beta of the B-FCC
subscale approached statistical significance, a trend suggesting that
higher resting vagal activity may be linked to higher B-FCC, and thus
should be most relevant to be tested in a larger group of participants.

Although our results should be considered preliminary, some
strengths of the present study can be pointed out. First, the study ap-
plied a well-validated questionnaire to measure IE. The psychometric
properties of the IES-2 have been upheld in college students (Tylka and
Kroon Van Diest, 2013). Specifically, its 4-factor structure was con-
firmed, and its total and subscale scores were internally consistent,
stable over a 3-week period and yielded evidence of construct (con-
vergent, discriminant, and incremental) validity. Second, we in-
vestigated RMSSD which, measured in milliseconds, is considered to be
a stable (Li et al., 2009) and valid (Thayer and Sternberg, 2010) time-
domain measure of vmHRV. Whereas some have suggested that under
certain circumstances RMSSD may reflect sympathetic influences
(Berntson et al., 2005), RMSSD correlated strongly with high frequency
power (r = 0.932, p < 0.001), suggesting that RMSSD is primarily
vagally-mediated.

As a surrogate indicator for the activity of the vagus nerve, which
plays an important role in regulating hunger and satiety (Berthoud,
2008; see Section 1), vmHRV has been previously subject to in-
vestigation in the context of eating regulation. For example, significant
associations between increased vmHRV and eating restraint (Geisler
et al., 2016; Young et al., 2017) as well as decreased vmHRV and dis-
inhibited eating (Young and Watkins, 2016) have been reported. Ac-
cordingly, it can be inferred that vmHRV is a valid and suitable measure
for the purposes of examining eating behavior and regulation.

The present study has several limitations. First, participants were
recruited from a college population, which clearly limits the general-
izability of the results. Moreover, the study did not measure eating
disorder symptomatology, nor were participants asked or evaluated for
a current or past eating disorder diagnosis. Including these assessments
in future research could reveal whether the negative association be-
tween vagal activity and UPE holds true in populations in which in-
dividuals with eating disorders have been excluded or if our finding
may be exclusively attributable to the conceptual overlap between UPE
and eating disorder symptomatology.

Lastly, taking height and weight measurements, as well as asking
about dietary habits, may have acted as a potential stressor for those
participants who are sensitive about their body and eating behaviors.
This might have affected the subsequently recorded resting vmHRV. To
rule out such an effect, it may be beneficial to change the order of the
study procedure in future investigations.

4.1. Conclusion

The present study's findings provide tentative evidence for higher
vagal activity indexed by vmHRV as a potential marker for unfavorable
eating behaviors (i.e., low UPE). Future studies should include mea-
sures of self-regulation and eating disorder symptomatology to identify
potential mediators or moderators.
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